Asynchronous Processing Module
Overview
The Asynchronous Processing Module is responsible for managing and executing background jobs and long-running tasks in PDeck. This module ensures that resource-intensive operations don't block the main application thread, maintaining responsiveness and scalability of the system.
Key Responsibilities
- Manage job queues for various types of background tasks
- Schedule and execute jobs asynchronously
- Handle job priorities and concurrency
- Provide job status updates and error handling
- Implement retry mechanisms for failed jobs
- Manage distributed job processing across multiple workers
Technology Stack
- Node.js for the core implementation
- Bull for job queue management
- Redis for storing job data and as a message broker
- PM2 or similar for process management and scaling
Implementation Guidelines
1. Setting Up the Asynchronous Processing Module
Create a new module for managing asynchronous jobs:
// services/asyncProcessingService.js
const Bull = require('bull')
const Redis = require('ioredis')
class AsyncProcessingService {
constructor() {
this.redis = new Redis(process.env.REDIS_URL)
this.queues = {}
this.setupQueues()
}
setupQueues() {
const queueConfigs = [
{ name: 'taskPrioritization', concurrency: 5 },
{ name: 'dataSync', concurrency: 3 },
{ name: 'notificationDispatch', concurrency: 10 },
{ name: 'reportGeneration', concurrency: 2 }
]
queueConfigs.forEach(config => {
this.queues[config.name] = new Bull(config.name, {
redis: this.redis,
defaultJobOptions: {
removeOnComplete: true,
removeOnFail: false
}
})
this.setupQueueProcessor(config.name, config.concurrency)
})
}
setupQueueProcessor(queueName, concurrency) {
this.queues[queueName].process(concurrency, async (job) => {
const processorPath = `./jobProcessors/${queueName}Processor`
const processor = require(processorPath)
return await processor(job.data)
})
}
// ... (other methods)
}
module.exports = new AsyncProcessingService()2. Implementing Job Addition and Management
Create methods to add jobs to queues and manage their lifecycle:
class AsyncProcessingService {
// ... (previous code)
async addJob(queueName, data, options = {}) {
if (!this.queues[queueName]) {
throw new Error(`Queue ${queueName} not found`)
}
return await this.queues[queueName].add(data, options)
}
async getJobStatus(queueName, jobId) {
const queue = this.queues[queueName]
const job = await queue.getJob(jobId)
if (!job) {
return null
}
const state = await job.getState()
return {
id: job.id,
state,
progress: job.progress(),
failedReason: job.failedReason,
stacktrace: job.stacktrace,
returnvalue: job.returnvalue
}
}
async removeJob(queueName, jobId) {
const queue = this.queues[queueName]
const job = await queue.getJob(jobId)
if (job) {
await job.remove()
return true
}
return false
}
async pauseQueue(queueName) {
await this.queues[queueName].pause()
}
async resumeQueue(queueName) {
await this.queues[queueName].resume()
}
}3. Implementing Job Processors
Create separate files for each job processor:
// jobProcessors/taskPrioritizationProcessor.js
const TaskPrioritizationEngine = require('../services/taskPrioritizationEngine')
module.exports = async (data) => {
const { userId } = data
await TaskPrioritizationEngine.prioritizeTasks(userId)
return { success: true, message: 'Tasks prioritized successfully' }
}
// jobProcessors/dataSyncProcessor.js
const ExternalIntegrationsService = require('../services/externalIntegrationsService')
module.exports = async (data) => {
const { userId, integrationType } = data
await ExternalIntegrationsService.syncData(userId, integrationType)
return { success: true, message: 'Data synced successfully' }
}
// Similar processors for notificationDispatch and reportGeneration4. Implementing Error Handling and Retries
Add error handling and retry logic:
class AsyncProcessingService {
// ... (previous code)
setupQueueProcessor(queueName, concurrency) {
this.queues[queueName].process(concurrency, async (job) => {
const processorPath = `./jobProcessors/${queueName}Processor`
const processor = require(processorPath)
try {
return await processor(job.data)
} catch (error) {
console.error(`Error processing job ${job.id} in queue ${queueName}:`, error)
throw error // This will trigger a retry if retries are configured
}
})
this.queues[queueName].on('failed', (job, err) => {
console.error(`Job ${job.id} in queue ${queueName} failed with error:`, err)
})
}
async addJob(queueName, data, options = {}) {
const defaultOptions = {
attempts: 3,
backoff: {
type: 'exponential',
delay: 1000
}
}
return await this.queues[queueName].add(data, { ...defaultOptions, ...options })
}
}5. Implementing Job Progress Tracking
Add methods to track and update job progress:
class AsyncProcessingService {
// ... (previous code)
async updateJobProgress(queueName, jobId, progress) {
const queue = this.queues[queueName]
const job = await queue.getJob(jobId)
if (job) {
await job.progress(progress)
return true
}
return false
}
}
// Usage in a job processor
module.exports = async (data) => {
const { jobId } = data
await AsyncProcessingService.updateJobProgress('taskPrioritization', jobId, 10)
// Do some work
await AsyncProcessingService.updateJobProgress('taskPrioritization', jobId, 50)
// Do more work
await AsyncProcessingService.updateJobProgress('taskPrioritization', jobId, 100)
return { success: true, message: 'Job completed successfully' }
}6. Implementing Scheduled Jobs
Add support for scheduled and recurring jobs:
class AsyncProcessingService {
// ... (previous code)
async scheduleRecurringJob(queueName, data, cronExpression) {
return await this.queues[queueName].add(data, {
repeat: { cron: cronExpression }
})
}
async scheduleDelayedJob(queueName, data, delay) {
return await this.queues[queueName].add(data, {
delay: delay
})
}
async removeRecurringJob(queueName, jobId) {
const queue = this.queues[queueName]
const repeatableJobs = await queue.getRepeatableJobs()
const job = repeatableJobs.find(j => j.id === jobId)
if (job) {
await queue.removeRepeatableByKey(job.key)
return true
}
return false
}
}7. Implementing Queue Monitoring
Add methods to monitor queue health and performance:
class AsyncProcessingService {
// ... (previous code)
async getQueueStats(queueName) {
const queue = this.queues[queueName]
const [
jobCounts,
completedCount,
failedCount,
delayedCount,
activeCount,
waitingCount,
pausedCount
] = await Promise.all([
queue.getJobCounts(),
queue.getCompletedCount(),
queue.getFailedCount(),
queue.getDelayedCount(),
queue.getActiveCount(),
queue.getWaitingCount(),
queue.getPausedCount()
])
return {
jobCounts,
completedCount,
failedCount,
delayedCount,
activeCount,
waitingCount,
pausedCount
}
}
async cleanOldJobs(queueName, grace, status) {
return await this.queues[queueName].clean(grace, status)
}
}Best Practices
- Use appropriate job priorities to ensure critical tasks are processed first.
- Implement proper error handling and logging for all job processors.
- Use reasonable retry strategies to handle transient failures.
- Monitor queue depths and processing times to identify bottlenecks.
- Implement job timeouts to prevent stuck jobs from blocking the queue.
- Use separate queues for different types of jobs to prevent slow jobs from blocking fast ones.
- Implement a dead-letter queue for jobs that consistently fail after retries.
Next Steps
- Implement a user interface for monitoring job queues and managing jobs.
- Develop more sophisticated retry strategies based on error types.
- Implement job dependencies to allow for complex workflows.
- Create a system for dynamically scaling worker processes based on queue load.
- Implement job result caching for frequently run jobs with consistent results.
- Develop a testing framework for job processors to ensure reliability.
- Implement a notification system for critical job failures.